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Abstract
The static critical phenomenology near the Curie temperature of the re-entrant metallic alloys
Au0.81Fe0.19, Ni0.78Mn0.22, Ni0.79Mn0.21 and amorphous a-Fe0.98Zr0.08 is studied using a variety
of experimental techniques and methods of analysis. We have generally found that the values
for the exponents α, β , γ and δ depart significantly from the predictions for the 3D Heisenberg
model and are intermediate between these expectations and the values characterizing a typical
spin glass transition. Comparing the exponents obtained in our work with indices for other
re-entrant systems reported in the literature, a weak universality class may be defined where the
exponents are distributed within a certain range around average values.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The magnetic properties of random solid solutions have been
extensively studied in the last thirty years. In a certain
number of these systems, including metals and insulators, a
re-entrant behavior that shares properties of both spin glass
and ferromagnetic orderings have been observed [1]. When
cooled from the high temperature paramagnetic phase, the
re-entrant systems first enter into a ferromagnetic-like state
where the spontaneous magnetization rises rapidly to large
values below the Curie temperature, Tc [2, 3]. However, when
the temperature is decreased below a certain characteristic
value TK, the magnetic response of these systems displays
features of spin glasses. In particular, the initial DC magnetic
susceptibility shows a marked fall from the limiting value
imposed by the demagnetizing effect at TK [4, 5]. Moreover,
significant ZFC–FC magnetization irreversibilities are usually
observed in the re-entrant region when measurements are
performed with low and moderate fields [2, 3]. Anomalies
reminding the spin glass state are also observed below
TK in neutron diffraction spectra [6], electron paramagnetic

resonance [7], Mössbauer effect [8], magneto-resistance [9],
among other properties.

At first sight, the occurrence of the re-entrant phase
in certain disordered magnets seems paradoxical since it
suggests that the fundamental state has larger entropy
than the intermediate ferromagnetic-like state. Thus, it
is not surprising that much controversy and seemingly
contradictory results about the nature of the re-entrant as
well as the ferromagnetic-like states are encountered in the
literature [1]. For instance, in certain systems, such as
the semiconductor EuxSr1−x S, neutron diffraction studies
do not show evidence for magnetic Bragg scattering in
the re-entrant state [10]. However, direct observation of
domain structure by Lorentz microscopy in polycrystalline
Ni1−x Mnx , and in the amorphous (Fe78Mn22)75P16B6Al3

and a-Fe1−xZrx does not reveal significant change upon
variation of the temperature through TK [11]. On the other
hand, several reports focus on the qualitative differences
between the ferromagnetic-like phase in the re-entrants and the
conventional collinear ferromagnetic state. Examples are spin-
wave excitations [12], magnetic relaxation [13] and critical
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properties near Tc [14–17]. The re-entrant magnetic behavior
is now being related to the inverse freezing problem [18]
which is a current theoretical challenge aimed to describe
unconventional transitions where the low temperature phase
looks more entropic than the state at higher temperatures [19].

In this paper, we report on an experimental study of the
static critical phenomenology near Tc of a number of metallic
re-entrant magnets. The investigated systems are the fcc
alloys Au0.81Fe0.19, Ni0.79Mn0.21 and Ni0.78Mn0.22. Results
are also presented on the metallic amorphous Fe0.92Zr0.08.
Magnetization at low fields, low frequency AC susceptibility,
resistivity and specific heat measurements were performed
in order to determine the critical exponents α, β , γ and δ.
Different methods were employed to analyze the results. We
have generally found exponents whose values are intermediate
between those largely accepted for Heisenberg ferromagnets in
the ordered case [20] and those usually observed in canonical
spin glass systems [21]. The obtained exponents are weakly
dependent on the studied system. This fact suggests that
a specific universality class may not exist for the re-entrant
magnetic systems. We are thus lead to suppose that although
disorder is indeed relevant to the ferromagnetic transition of
the re-entrant magnets, its influence on criticality may differ
slightly from system to system.

Our results go along the line of previous investigations
on the critical behavior near Tc of re-entrant systems that
report on anomalous exponent values [14–17], but contrasts
with results of extensive studies on amorphous collinear
ferromagnets, where disorder is reported to be irrelevant for
critical phenomenology [22].

2. Experimental details

The Au0.81Fe0.19 alloy was prepared by arc melting the
constituents under argon atmosphere. The purities of the
starting metals were 99.998% for Au and 99.99% for Fe. The
mass loss was negligible so that the nominal stoichiometry
was preserved in the resulting ingot of 1.5 g weight. Part of
the ingot was rolled to a slab having width of 0.22 mm, from
which samples for magnetic and transport measurements were
obtained. The sample for magnetization and AC susceptibility
experiments has the form of a disk with diameter 4.3 mm.
The sample for resistivity measurements has the form of a
parallelepiped with surface 0.95 × 0.48 mm2. Another part
of the original ingot was shaped to an ellipsoidal form with
weigh 867.8 mg and used for specific heat measurements. All
samples were encapsulated in an evacuated quartz ampoule,
then annealed in 950 ◦C during 24 h. Finally a quench into
water was performed as final step to prevent Fe clustering.

Two Ni1−x–Mnx samples with concentrations x = 0.21
and 0.22 were prepared from high purity Ni (99.999%) and
freshly cleaned Mn (99.9%). These starting materials were
arc-melted under Ar 0.2 bar. Samples for magnetic, resistivity
and specific heat experiments were extracted from the resulting
ingots similarly to the Au–Fe case. These samples were sealed
into a quartz tube, then annealed in vacuum at 900 ◦C for 1 h
and subsequently quenched into water mixed with ice.

The a-Fe0.92Zr0.08 sample used in magnetic measurements
was a small piece cut from ribbons prepared by melt-spinning
as described in [23].

Magnetization measurements were performed using a
MPMS Quantum Design SQUID magnetometer operating in
the RSO mode. The magnetization M was recorded as a
function of the temperature at fixed fields according to the
zero field cooling (ZFC) and field cooling (FC) prescriptions.
Measurements of M versus H at fixed temperature were
also done. The magnetic field magnitude in our experiments
was restricted to the range 0–500 Oe. In the magnetic
measurements, the field was always kept parallel to the plane of
the disk-type samples in order to minimize the demagnetization
effects.

The temperature dependent real and imaginary parts of
the AC susceptibility were measured in the frequency range
100–6000 Hz with a Quantum Design PPMS platform. The
amplitude of the exciting AC field was kept fixed to 10 Oe. No
external DC field was applied in these experiments.

Accurate resistivity measurements were performed using
a low frequency AC technique that employs a variable decade
transformer in a compensating circuit and a lock-in amplifier as
a null detector. Measurements were done in a large temperature
interval encompassing the Curie temperature of the Au–Fe
and Ni–Mn alloys. Temperatures were determined with a Pt
sensor having 1 mK accuracy. A large number of resistivity
versus T data points were recorded while slowly varying the
temperature, so that the temperature derivative of the resistivity
dρ/dT could be numerically calculated.

The specific heat results were obtained with a quasi-
adiabatic pulse technique. The addenda heat capacity was
measured separately and subtracted from the data. The
temperature sensor was a grounded carbon resistor recalibrated
at each run. The temperatures could be determined with
accuracy better than 0.1 K. The investigated temperature range
extends from around 10 K to near room temperature for the
Au–Fe and Ni–Mn systems. The temperature increments used
in the specific heat measurements varied from 0.2 K near Tc to
2 K far from this point.

3. Results

3.1. Au–Fe

Figure 1(a) shows a representative M versus T measurement
for the Au0.81Fe0.19 alloy measured with H = 30 Oe. A
clear ZFC–FC splitting occurs at low temperatures as expected
for a re-entrant system. This splitting is usually associated
to the canting temperature TK. In figure 1(b) an H –T phase
diagram derived from our data is shown for this system. The
temperatures TK(H ) were obtained from the points where the
ZFC and FC curves split apart and the Curie temperatures
Tc(H ) were estimated from the scaling analyses described
below. In this diagram, the regions labeled as PM, FM and
R-SG refer to the paramagnetic, ferromagnetic and re-entrant
phases, respectively. This diagram illustrates the peculiarities
of the re-entrant magnetic systems. When the temperature
is decreased, a transition occurs from the paramagnetic state
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a

b

Figure 1. (a) Magnetic moment as a function of temperature for
Au0.81Fe0.19 measured at H = 30 Oe according to the zero field
cooling (ZFC) and field cooling (FC) prescriptions. (b) H–T
diagram for Au0.81Fe0.19 showing the location of the
paramagnetic (PM), ferromagnetic (FM) and re-entrant (R-SG)
regions. The canting temperatures TK are identified from the point
where the ZFC and FC curves separate. The Curie temperatures Tc

are obtained from the scaling analyses presented in the paper.

to a ferromagnetic-type phase where the order parameter is
the spontaneous magnetization. Upon further decreasing the
temperature, the system enters into a spin glass-like state
below TK(H ), where effects of disorder and frustration play
a major role, as revealed by the ZFC–FC irreversibilities in
the magnetic properties. One generally believes that the spins
become canted at TK(H ) because of freezing of their transverse
degrees of freedom [1].

In figure 2(a), the magnetization is plotted as a function
of the external field in several temperatures around Tc. From
a straight line fitted to the M versus H data at low fields,
and using the procedure described in [24], we deduce the
demagnetization factor η1 = 0.006. This factor is considered
throughout the analysis of the magnetic measurements in the
Au0.81Fe0.19 sample. The experimentally derived value for
η1 is in agreement with the one estimated by approximately
describing the sample as an oblate ellipsoid [25].

In order to obtain a first estimate of Tc and the critical
exponents β and γ , we analyze the isotherms of figure 2(a)
according to the Arrot–Noakes equation of state [26],

(H/M)1/γ = at + bM1/β, (1)

where t = (T − Tc)/Tc and a, b are material dependent
parameters. Thus, we outline M1/β versus (H/M)1/γ plots in

Figure 2. (a) Magnetization versus field in several fixed temperatures
closely above and below Tc for the Au0.81Fe0.19 alloy. Some
measurements are not shown for the sake of clarity.
(b) Arrot–Noakes plots for the magnetization results shown in
panel (a). Some isotherms are indicated. The derived critical
exponents and Tc are quoted on the figure.

fixed temperatures around Tc in such a way that the exponents
β and γ could be varied until straight lines were obtained.
Figure 2(b) shows the linearized Arrot–Noakes plots. As
commonly found in the experimental studies of the critical
phenomenology of disordered ferromagnetic systems, data for
Au0.81Fe0.19 obtained in low applied fields deviate strongly
from the straight line behavior, probably because of large
domain and demagnetization effects [27]. Thus, the points
represented in figure 2(b) were obtained in the field range
100–500 Oe. The isotherm passing through the origin defines
the value of the critical temperature, Tc = 177.5 K in this
analysis. The corresponding critical exponents are γ = 1.64
and β = 0.54. Uncertainties around 10% should be considered
for these parameters.

The critical indices obtained with the Arrot–Noakes
method were further tested based on the scaling equation of
state [28],

M(H, t)/tβ = M(H/|t|βδ; ±1), (2)

where the exponent δ is related to the critical isotherm and ±1
refers to temperatures above and below Tc, respectively. Using
the scaling relation [28],

βδ = β + γ, (3)

3
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Figure 3. Logarithmic plot of the critical isotherm for Au0.81Fe0.19.

we may define the scaled magnetization m = M(H, t)|t|−β

and the scaled field h = H |t|−(β+γ ). Then, plots of m versus
h should collapse into two universal functions m = F±(h), for
temperatures above (+) and below (−)Tc. We indeed obtained
good scaling of the data according to the reduced equation
of state using the exponents β = 0.54 and γ = 1.64, and
considering Tc = 177 K.

Since the critical isotherm (t = 0) obeys the relation [28]
M = M0 H 1/δ, where M0 is a constant, a simple plot of ln(M)

as a function of ln H as the one shown in figure 3 allows
the determination of δ. As reported in the figure, we obtain
δ = 4.73 (±0.05). This value for δ is consistent with the
one calculated from equation (3) using the previously obtained
values for γ and β .

The critical exponents γ and β could be independently
determined by the Kouvel–Fisher method [29]. Since the
asymptotic behavior of the initial susceptibility and the
spontaneous magnetization near Tc are given respectively by
χ0 = A|t|−γ and Ms = limH→0 M = B|t|β , where A and B
are constant amplitudes, one may write,

X (T ) = −χ0/(dχ0/dT ) = (T − Tc)/γ (4a)

Y (T ) = −Ms/(dMs/dT ) = (Tc − T )/β. (4b)

Thus, the identification of linear behavior in plots of
X (T ) versus T and Y (T ) versus T allows the simultaneous
determination of Tc and the respective critical exponents.

The use of the Kouvel–Fisher method implies the previous
determination of the initial susceptibility and the spontaneous
magnetization from the experimental data obtained in nonzero
fields. However, instead of extrapolating the DC susceptibility
data to zero field, we determined the function X (T ) in
equation (4a) directly from the measured χ in several fields
between 20 and 300 Oe and judge the results on an average
basis. Table 1 shows the so obtained values for γ and Tc for
each applied field. We indeed found a fairly constant γ which
means that the magnetic moment is linear with the applied field
as expected for a paramagnetic system in the low field range.
Figure 4(a) depicts a representative Kouvel–Fisher plot for the
DC susceptibility of our Au–Fe alloy. From these experiments,
we obtain γ = 1.63(±0.03) and Tc = 168 ± 1 K.

We found that it is crucial to take into account the
demagnetizing effects for extracting meaningful results from

Figure 4. Representative Kouvel–Fisher plots of the (a) DC
susceptibility, (b) AC susceptibility and (c) magnetization for
Au0.81Fe0.19. The applied DC fields and employed frequency are
quoted on the figures.

Table 1. Critical exponent γ for the alloy Au0.81Fe0.19 obtained by
applying the Kouvel–Fisher method to DC susceptibility
measurements performed in the quoted fields.

System H (Oe) Tc (K) γ

Au–Fe 20 166.4 1.66
30 169.1 1.59
40 168.3 1.66
50 166.5 1.65
60 168.6 1.61
70 168.6 1.61
80 168.4 1.62
90 168.6 1.61

100 168.3 1.62
110 168.6 1.60
130 168.9 1.60
150 166.3 1.65
200 166.2 1.66
300 166.1 1.65

Averages 167.8 ± 1.2 1.63 ± 0.03

the magnetization of the Au–Fe sample using the Kouvel–
Fisher method. We thus adopt the following procedure. We
select M versus H measurements in the range 100–300 Oe.
This field range is assumed to avoid the problematic very
low field data. However, the high field limit is kept as low
as possible so that an excessively large distance from the

4
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Table 2. Critical exponent γ for the alloy Au0.81Fe0.19 obtained by
applying the Kouvel–Fisher method to AC susceptibility
measurements performed in the quoted frequencies. The magnitude
of the AC field was 5 Oe and no DC field was superimposed.

System f (s−1) Tc (K) γ

Au–Fe 100 170.8 1.63
200 171.0 1.65
300 172.0 1.62
600 171.9 1.62

1000 170.4 1.65
2000 170.6 1.67
3000 170.5 1.65
6000 170.8 1.66

Averages 171.0 ± 0.6 1.64 ± 0.02

critical point is prevented. Then, for each temperature we
fit the M(H ) data to a 2nd order polynomial function of
H , where the coefficients are temperature dependent. These
polynomials allow us to reconstruct the M versus T curve for
any fixed value of the internal field, Hi = H − ηM , within
the selected range for the applied field. In figure 4(c) we show
the Kouvel–Fisher plot derived from the data corresponding to
Hi = 300 Oe. From this analysis we deduced β = 0.53 and
Tc = 176.7 K. This value for Tc is large when compared to that
estimated from the paramagnetic side of the transition.

Our AC susceptibility results are particularly useful for
analysis with the Kouvel–Fischer method since they were
obtained in absence of an external DC field. In order to
increase the accuracy of the derived critical indices, we
performed measurements in several exciting frequencies, as
listed in table 2. From those experiments we obtained γ =
1.64(±0.02) and Tc = 171.0(±0.6) K. Figure 4(b) shows a
representative Kouvel–Fisher plot for the AC susceptibility of
our Au–Fe alloy.

The specific heat exponent α is generally the most difficult
to determine in magnetic transitions of disordered systems. We
perform careful specific heat measurements in the temperature
interval 25–240 K, as shown by results in figure 5, but not even
a feeble anomaly was observed around Tc.

Near to a second order magnetic phase transition the
excitations contributing to the magnetic free energy and those
responsible for the scattering are the same [30]. Thus,
measurements of the electrical resistivity in the critical region
may lead to the determination of α. In a short temperature
interval encompassing Tc, the temperature derivative of the
resistivity may be written as [31]

dρ

dT
= C±

α
(t−α − 1) + D±, (5)

where C is a critical amplitude, D is a constant that measures
the strength of the non-critical contribution to the resistivity
and the signal ± refers to temperatures above and below Tc,
respectively.

In spite of making repeated measurements of the Au–Fe
sample resistivity in a large temperature interval around Tc, we
could not precisely fit our results to equation (5) and were not
able to extract a reliable estimate for the exponent α in this

Figure 5. Specific heat divided by the temperature as a function of T
for Au0.81Fe0.19.

case. We thus deduced this exponent by assuming that the
Rushbrooke,

α + 2β + γ = 2, (6)

and Griffiths,
α + β(δ + 1) = 2, (7)

scaling relations [28] are valid for the ferromagnetic transition
of the re-entrant magnets. We also deduced the value for
α in a closely related Au–Fe alloy by using the value for
the correlation length exponent ν obtained from small angle
neutron scattering experiments [32] and assuming the validity
of the hyperscaling relation, α = 2 − νd , where d = 3 is the
dimensionality.

Table 3 condenses the values for the critical indices
determined in this work and values reported in the literature
for the re-entrant Au–Fe alloys. Also shown in table 3 are the
results for Ni–Mn alloys. For Au0.81Fe0.19 we obtained a good
agreement in the determination of the critical exponents within
the different methods used. However, the extrapolated critical
temperature depends significantly on the method of analysis.
In table 3, the reported critical temperature Tc is estimated from
averaging the values obtained from the various methods of
analysis. Previously published data on a different sample of the
same alloy [17] and results reported by Gangopadhyay [15] for
Au0.82Fe0.18 are also listed in table 3. The exponents reported
in [15] differ strongly from those obtained in the present study.
Authors in [15] estimated the saturation magnetization and the
initial susceptibility from their DC magnetization data by using
M3 versus H/M isotherms, then applying the Kouvel–Fisher
analysis. The exponents reported by them refer to a region in
the immediate vicinity of Tc. Their exponent γ is found to be
strongly temperature dependent and evolves to higher values
when (T −Tc) increases. This is unusual, since one expects that
this exponent should evolve toward the mean-field expectancy
γ = 1 when the temperature is progressively increased
above Tc. In our experiments, rounding effects obscure the
critical phenomenology in the immediate vicinity of Tc, either
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Table 3. Average critical exponents for the ferromagnetic transition in the Au0.81Fe0.19 alloy and closely related systems, and for the alloys
Ni0.78Mn0.22 and Ni0.79Mn0.21.

αa

System ρ R G β γ δ Tc (K) Reference

Au0.81Fe0.19 −0.7 −1.1 0.54 ± 0.05 1.64 ± 0.02 4.73 174 ± 4 This work
Au0.81Fe0.19 −0.7 −1.0 0.52 ± 0.04 1.63 ± 0.04 4.69 177 [17]
Au0.82Fe0.18 −0.05 −0.3 0.46 ± 0.03 1.13 ± 0.04 4.0 ± 0.1 154 [15]b

Au–Fe −1 ± 0.1 2 ± 0.2 [32]c

Ni0.78Mn0.22 −0.8 −0.8 −1.08 0.55 ± 0.05 1.71 ± 0.03 4.61 ± 0.03 227 ± 3 This work
Ni0.78Mn0.22 −0.81 −0.79 0.54 ± 0.04 1.72 ± 0.04 [34]
Ni0.79Mn0.21 1.71 ± 0.1 281 ± 3 Thisworkd

a The values for α were obtained from dρ/dT results or deduced from the Rushbrooke (R) or Griffiths (G) scaling
relations.
bAu0.82Fe0.18. Exponents obtained from Kouvel–Fisher analysis from DC magnetization measurements where the
saturation magnetization and the initial susceptibility where previously determined.
cAu0.82Fe0.18 and Au0.80Fe0.20. Exponent deduced from the scaling relations, α = 2 − νd , and γ = 2ν, where ν was
extracted from SANS experiments.
d Kouvel–Fisher analysis of AC susceptibility measurements.

in the analysis of DC magnetization or AC susceptibility
measurements. Thus, most probably, the exponents reported
in the present investigation are related to a different reduced
temperature range as the one studied in [15].

3.2. Ni–Mn

We repeat the above reported experiments and analyses for the
re-entrant magnets Ni0.78Mn0.22 and Ni0.79Mn0.21. Figure 6(a)
shows a representative M versus T measurement for the
N0.78Mn0.22 alloy measured in H = 30 Oe. A clear ZFC–
FC splitting occurs below TK ≈ 50 K, where the system enters
the spin glass phase. In panel (b) of figure 6 an H –T magnetic
phase diagram is shown for Ni0.78Mn0.22. This diagram was
constructed similarly to the one shown in figure 1(b).

The magnetization for the Ni0.78Mn0.22 alloy is plotted as
a function of the external field in several temperatures near Tc

and is shown in figure 7(a). As for the Au–Fe case, we deduced
the demagnetization factor η2 = 0.062 from the straight line
fitted to the M versus H data in low fields. Exactly the same
procedure was done for the sample Ni0.79Mn0.21. In that case
the obtained demagnetization factor is η3 = 0.030.

Figure 7(b) shows the Arrot–Noakes plots for Ni0.78Mn0.22.
We derived the exponents γ = 1.71 and β = 0.55. The
same exponents were obtained in Ni0.79Mn0.21. However, this
case is experimentally less clear cut and the reported exponents
should be taken as less accurate estimations. In the case of
Ni0.78Mn0.22 these exponents were tested with the scaling equa-
tion of state (2) assuming the validity of equation (3). Plots of
the reduced magnetization m versus the scaled field h collapse
fairly well into two universal functions m = F±(h), for tem-
peratures above (+) and below (−)Tc, confirming the values
previously obtained for γ and β in both alloys.

In the case of the Ni0.78Mn0.22 alloy, logarithmic plots of
the critical magnetization isotherm as a function of the applied
field allowed the extraction of the exponent δ = 4.61.

Kouvel–Fisher analysis based on equations (4a) and (4b)
were also performed for the Ni–Mn systems using DC and AC
susceptibility measurements. The DC measurements in the

Figure 6. The same as figure 1, but for Ni0.78Ni0.22

paramagnetic phase were performed in several applied fields
and the results for the exponent γ were judged on an average
basis. For the Ni0.78Mn0.22 alloy useful DC susceptibility
results were obtained in the field range between 60 and 400 Oe.
The average was performed over six different applied fields
and we estimate γ = 1.71 and Tc = 225 K. This value for
Tc is significantly smaller than that derived from the Arrot–
Noakes method, but is still within the estimated range of
inaccuracy. The AC susceptibility experiments performed for
the Ni0.78Mn0.22 system are consistent with γ = 1.71, but the
error could not be precisely estimated. For the Ni0.79Mn0.21

system, seven independent AC susceptibility measurements

6
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Figure 7. (a) Magnetization versus field in several fixed temperatures
closely above and below Tc for the Ni0.78Mn0.22 alloy. Part of the
measured data is not shown. (b) Arrot–Noakes plots for the
magnetization results depicted in panel (a). Isotherms are spaced by
1 K. The derived critical exponents and Tc are quoted on the figure.

in the frequency range between 100 and 6000 Hz were
performed. A representative Kouvel–Fisher plot of these AC
susceptibility measurements is shown in figure 8. The average
parameters obtained from the Kouvel–Fisher analysis in this
case are γ = 1.71 and Tc = 281 K. The imprecision in
the determination of the Curie temperature of the Ni0.79Mn0.21

is also appreciable, corroborating the difficulties for studying
the critical phenomenology in the Ni–Mn system. It is
interesting that in higher temperatures the AC susceptibility
behaves as a power law with exponent γ ≈ 0.8 in a large
temperature interval above Tc, as may be seen in figure 8.
Small susceptibility exponents have been identified above
the ferromagnetic transition of semi-disordered systems with
spinel structure [33]. In the case of the Ni0.79Mn0.21 alloy, the
regime with γ smaller than the mean-field value extrapolates to
a too high critical temperature, so that it cannot be considered
as an asymptotic behavior.

Specific heat measurements (not shown) were performed
for the Ni0.78Mn0.22 re-entrant system. No anomaly could be
seen near the Curie temperature. However, fits of dρ/dT
results to equation (5) allowed a rough estimation of the critical
exponent α for this alloy in the paramagnetic side of the
transition. A representative measurement of dρ/dT for the
Ni0.78Mn0.22 alloy is shown in figure 9. The critical parameters
corresponding to the continuous fitting line are α = −0.8±0.1
and Tc = 229(±1) K. The values for α and Tc are coincident
with those previously obtained using resistivity measurements
in an alloy of the same composition [34]. In the magnetically

Figure 8. Representative Kouvel–Fischer plot for the AC
susceptibility of Ni0.79Fe0.21. The applied frequency is 600 Hz.
Exponents are quoted on the figure.

Figure 9. Temperature derivative of the resistivity versus T for
Ni0.78Ni0.22. The continuous line corresponds to a fit to equation (5)
in the range T > Tc. The relevant critical exponent is quoted.

ordered state, a fit of dρ/dT to equation (5) could not be
done because of an interesting peculiarity of the resistivity of
Ni0.78Mn0.22 occurring just below the Curie temperature. As
shown in figure 10, a maximum reminiscent of the opening
of a super-zone gap in the Fermi surface is clearly evidenced
in measurements performed at zero and low applied fields.
Fields above 50 Oe applied parallel to the current strongly
suppress the effect, that is completely removed at 100 Oe. The
observation of a super-zone effect in the resistivity means that
in low applied fields an antiferromagnetic ordering competes
with and becomes favorable over the ferromagnetic coupling
in temperatures nearly below Tc. This effect should occur in
some regions of the sample having the size of the electron
mean-free-path or larger. The same effect was also observed
in the resistivity of some samples of the Heusler compound
Pd2MnSn, where antiferromagnetic coupling was suggested to
dominate over the ferromagnetic ordering in spatially limited
regions in temperatures closely below Tc [34].

Table 3 lists the critical indices obtained for the Ni–
Mn alloys. As for Au0.81Fe0.19, reported exponents and
respective errors are averages over the values obtained from
each experiment and method used to analyze the results.
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Table 4. Anomalous critical exponents for the ferromagnetic transition in a-FeZr.

Alloy α β γ δ Tc (K) Reference

Fe0.92Zr0.08 0.62 1.92 5.82 174.6 [14]
Fe0.92Zr0.08 −1.1 [36]
Fe0.92Zr0.08 0.66 1.76 186 This work
Fe0.90Zr0.10 0.56 1.87 4.84 227.6 [14]
Fe0.90Zr0.10 −0.68 0.44 1.79 5.10 230 [37]
Fe0.895Zr0.105 −0.93 0.47 2.00 5.31 224 [37]
Averages −0.90 ± 0.2 0.55 ± 0.1 1.87 ± 0.1 5.30 ± 0.5

Figure 10. Resistivity versus temperature near Tc for Ni0.78Ni0.22.
The quoted fields were applied parallel to the current.

3.3. Fe–Zr

We investigated the magnetization and AC susceptibility of the
amorphous alloy Fe0.92Zr0.08 and applied the Kouvel–Fisher
method to extract the γ and β exponents. A representative
analysis of the AC susceptibility measurements is shown in
figure 11. Based on the previously described average process
for analysing the DC susceptibility experiments performed
in several fields below 100 Oe, we obtained γ = 1.75 ±
0.03 and Tc = 187(±1) K, whereas from the average
of AC susceptibility measurements performed in different
frequencies, we derived γ = 1.76±0.02 and Tc = 184(±3) K.
The analysis of the magnetization near the Curie temperature
was difficult in spite of the negligible demagnetization factor
of the thin amorphous tape oriented along the field. The value
obtained is β = 0.66(±0.06).

A controversy exists about the static critical exponents in
a-FeZr alloys. Authors in [14, 34–37] found values for α, β ,
γ , and δ substantially larger than those expected in ordered
ferromagnets. On the other hand, Kaul [22, 38], Reisser et al
[27] and Ma et al [39] report on the ferromagnetic transition
of a number of a-FeZr with near Heisenberg-like β , γ , and
δ exponents. Table 4 shows the anomalous exponents found
for the a-FeZr systems. A significant dispersion occurs among
these indices, even for alloys having the same composition.
This fact is a further indication that the critical behavior in
these amorphous ferromagnets is strongly sample dependent.
Some alloys seem representative of re-entrant magnets, where

Figure 11. Representative Kouvel–Fischer plot for the AC
susceptibility of a-Fe0.92Zr0.08. The applied frequency and the
susceptibility exponent are quoted on the figure.

disorder is non-trivial (accompanied by frustration), while
others reproduce the critical phenomenology of the ordered
case, indicating that disorder in these cases is irrelevant.

4. Discussion

Table 5 condenses the main results on the static critical
exponents for the ferromagnetic transition of the re-entrant
alloys studied by us and the values encountered in the literature
for the same or closely related systems. Also listed are
exponents experimentally found for other re-entrant systems.
Because of the controversy on the critical phenomenology of
a-FeZr alloys, we did not include results for this system in
table 5. In order to allow comparisons, however, we list
the exponents for some classical crystalline ferromagnets [22]
and for a typical spin glass [21], as well as the most
accepted theoretical expectations for these indices in the
ordered [20] and disordered [40] cases. A theoretical study
of the critical phenomenology in the specific case of the re-
entrant magnets is still lacking. Listed in table 5 are the
asymptotic values reported by Sobotta and Wagner [40], who
proposed a renormalization-group calculation of the static
critical behavior in highly disordered ferromagnets in the limit
of small concentration of magnetic atoms.

With few exceptions, one observes that the values for
the static exponents for the re-entrant systems are very
different from those observed and predicted in the ordered
ferromagnets. From data in table 5 one concludes that disorder
is indeed relevant in the critical phenomenology related to
the ferromagnetic transition in the re-entrant magnets. This
fact is in contrast with the behavior of collinear amorphous

8



J. Phys.: Condens. Matter 21 (2009) 506006 C M Haetinger et al

Table 5. Anomalous critical exponents obtained experimentally for
the ferromagnetic transition in several re-entrant systems. Parameters
for other relevant systems are also listed for comparison. (Note: 3D
Heisenberg model in the disordered (D) and ordered (O) cases.)

System α β γ δ Reference

Au0.81Fe0.19 0.54 1.64 4.73 This work
Au0.81Fe0.19 0.52 1.63 4.69 [17]
Au0.82Fe0.18 −1a 2a [32]

Ni0.78Mn0.22 −0.8b 0.55 1.71 4.61 This work
Ni0.78Mn0.22 −0.81b 0.54 1.72 [32]
Ni0.79Mn0.21 1.71 This work

Cd(Cr1−x Inx )2S4 −1(a) 2 [42]
Eu0.7Sr0.3S −0.48c [43]
Eu0.8Sr0.2S0.5Se0.5 0.44 1.84 5.0 [44]
(PdFe)Mn 0.53 1.64 4.1 [45]

Averages −0.8 0.52 1.75 4.6

Ag–Mn spin glass −2.2 1.0 2.2 1.4 [21]

Fed −0.10 0.36 1.4 4.35 [22]
Nid −0.09 0.37 1.32 4.5 [22]

Theory (D) −1 0.5 2 5 [41]
Theory (O) −0.12 0.36 1.39 4.8 [20]

a Estimated from SANS experiments and scaling relations (see
text and table 3).
b Derived from dρ/dT measurements.
c Derived from specific heat measurements.
d Averages of values listed in [20].

ferromagnets, where the measured exponents have values close
to that of ordered Heisenberg systems [22].

Inspection of table 5 reveals that the values for α, β

and γ in the re-entrant systems are systematically in-between
those that describe the phase transition of classical three-
dimensional ferromagnetic materials and those characterizing
a spin glass transition. One should note, however, that the
spin glass transition, though being a true thermodynamic
phenomenon, is highly non-conventional. Indeed, in this case
the order parameter is related to M2 and criticality has been
identified in the non-linear contributions to the susceptibility
and magnetization [21].

Non-trivial disorder, associated to canting and frustration,
is the distinctive feature both in the re-entrant magnets and in
spin glasses. Likely, this is the origin for the non-conventional
critical phenomenology in these magnetic systems. However,
from the data in table 5 we cannot infer the existence
of a conventional universality class for the ferromagnetic
transition of the re-entrants. Given the reported experimental
uncertainties for the listed exponents, one can at most estimate
that a ‘weak universality’ may exist, allowing for some
dispersion around average values given by:

αm = −0.8(+0.3,−0.2); βm = 0.52(+0.03,−0.08);

γm = 1.75(+0.15,−0.12); δm = 4.6(+0.4,−0.5).

It is noticeable that the average exponents αm , βm and γm

are compatible with the Rushbrooke, αm + 2βm + 2γm = 2,
and Griffiths, αm + βm(δm + 1) = 2, scaling relations. For
the reported average values, the relations hold as inequalities.
However, if the dispersion is considered as uncertainties, the

equalities are also possible. The Widom, γm = βm(δm − 1),
and hyperscaling, αm = 2 − νmd , scaling relations also are
compatible with the above reported average values within the
dispersion intervals. For the specific reported values, the
Widom relation is slightly violated, whereas hyperscaling hold
as an inequality.

The non-observance of a strict universality class in the
case of the ferromagnetic transition of re-entrant systems is
a probable consequence of particularities in the mechanisms
leading to magnetic disorder in different systems. For instance,
in Au–Fe alloys a homogeneous disordered state may be
obtained provided that the tendency for Fe clustering is
impeded. Long-range magnetic interactions seem to prevail in
this case. On the other hand, the resistivity results of figure 10
suggest that in the Ni–Mn system magnetic disorder is related
to a subtle phase separation where antiferromagnetic regions
having at least the size of the electron mean-free-path nucleate
inside the ferromagnetic background. In such a system, the
canting must occur mainly at the boundaries between the ferro
and antiferromagnetic separated phases. Probably, short-range
interactions are more relevant to explain the macroscopic re-
entrant behavior in this case. The elusive criticality of a-
FeZr also might be related to some sample dependent canting
mechanism and to the balance between the role of short- and
long-range spin interactions.

From the calculations by Sobotta and Wagner [40, 41]
for randomly quenched ferromagnets, one should expect the
values α → −1, β → 0.5, γ → 2, and δ → 5. Although
these estimates do not fit exactly the exponents measured
in the present study and the average values of table 5, it
is clear that the theoretical predictions are consistent with
the experimental tendency. Unfortunately, more accurate
calculations of the critical exponents and a definitive answer
to the question of the existence or not of universality classes
for the ferromagnetic transition in the re-entrants systems, and
in disordered ferromagnets in general, are still not available for
the time being.

5. Conclusions

We have studied the critical phenomenology near the
paramagnetic–ferromagnetic transition of the disordered re-
entrant magnetic alloys Au0.81Fe0.19, Ni0.88Mn0.22, Ni0.89Mn0.21

and the amorphous Fe0.92Zr0.08. Using several experimental
techniques and different methods for analyzing the results, we
were able to obtain the static critical exponents α, β , γ and δ in
most cases. The values found for these exponents are between
those observed in a typical spin glass transition and the ex-
pectation for a classical ferromagnetic transition. This finding
contrasts to the widely studied and much better understood sit-
uation of amorphous ferromagnets with collinear spins. In the
latter, disorder was shown to be non-relevant and the critical
exponents are the same as those for the ordered systems [22].

The problem of the influence of non-trivial disorder,
which is associated to canting and frustration, in the
critical phenomenology of the ferromagnetic transition, is
scarcely studied, either experimentally as theoretically. Some
recent efforts to systematize the critical behavior of systems
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with different degrees of disorder exemplify the difficulties
encountered to draw a general picture about this subject [33].
Our results fits into a rough systematic represented by
the results in table 5 for a number of re-entrant magnets,
both metallic and insulating, that seems to define a weak
universality class where exponents are distributed within
significant intervals around average values. However, a true
universality class describing a unique critical phenomenology
near the Curie temperature of the re-entrant systems is
probably inexistent because of the various microscopic
mechanisms leading to spin-disorder in different systems.
A relevant result of our work related with this issue is
the observation of super-zone effects in the resistivity near
the ferromagnetic transition of Ni0.88Mn0.22. As a general
conclusion, we have found that the non-trivial spin-disorder
characteristic of the re-entrant systems leads to critical
exponents that are significantly different from those of ordered
ferromagnets.
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